
Analyzing Checkpointing Trends for Applications

on the IBM Blue Gene/P System

H. Naik, R. Gupta and P. Beckman

Mathematics and Computer Science Division

Argonne National Laboratory

{hnaik, rgupta, beckman}@mcs.anl.gov

Abstract—Current petascale systems have tens of thousands of
hardware components and complex system software stacks, which
increase the probability of faults occurring during the lifetime of
a process. Checkpointing has been a popular method of providing
fault tolerance in high-end systems. While considerable research
has been done to optimize checkpointing, in practice the method
still involves a high-cost overhead for users. In this paper, we
study the checkpointing overhead seen by applications running
on leadership-class machines such as the IBM Blue Gene/P at
Argonne National Laboratory. We study various applications
and design a methodology to assist users in understanding and
choosing checkpointing frequency and reducing the overhead
incurred. In particular, we study three popular applications—
the Grid-Based Projector-Augmented Wave application, the Carr-
Parrinello Molecular Dynamics application, and a Nek5000 com-
putational fluid dynamics application—and analyze their memory
usage and possible checkpointing trends on 32,768 processors of
the Blue Gene/P system.

I. INTRODUCTION

The past two decades have seen tremendous growth in

the scale, complexity, functionality, and usage of high-end

computing (HEC) machines. The Top500 [1] list shows that

performance offered by high-end systems has increased by

over eight times in the past five years. Current petascale

machines consist of hundreds of thousands of hardware com-

ponents and complex software stacks. Future exascale sys-

tems will exponentially increase this complexity, resulting in

systems with hundreds of millions of hardware components.

As failure rates increase with the hardware and software

component count and software complexity, large-scale faults

become unavoidable. This situation has led to fault tolerance

re-emerging as a prominent issue for these systems.

Various methods for fault tolerance have been researched

in the recent past. Fault tolerance at the hardware level has

been achieved mostly through redundancy or replication of

resources. Examples of this approach span from physical

redundancy (RAIDed disks [2], backup servers) to information

redundancy (ECC memory codes, parity memory). From the

vasts amounts of research devoted to software fault tolerance,

checkpointing [3] has become a popular method for achieving

This work was supported in part by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-AC02-06CH11357. This research also used resources of the
Leadership Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357.

fault tolerance in the software. Checkpointing requires saving

the local state of a process at a specific time and then rolling

back (recovery) to the latest saved state in the event of a

crash during the execution lifetime of a process. Since the

checkpointing process impacts the overall process running

time, researchers have sought ways to optimize checkpoint-

ing [4] [5] [6].

New petascale machines, such as the IBM Blue Gene

series [7], offer enormous computational power. Large-scale

applications using these machines continue to use checkpoint-

ing for proactive fault tolerance. Saving states of thousands of

processes during checkpoint can result in a heavy demand of

I/O and network resources. Since these machines have limited

I/O and network resources, frequent checkpoint, at this scale,

can result in longer execution times, especially if the I/O or

network resources become a bottleneck. For applications to

use these machines in the most efficient manner, we must

understand the feasibility of checkpointing and memory trends

of these applications on petascale machines. While measure-

ment and analysis of memory trends have received some study,

investigations have been limited to small-scale systems of up

to 64 processes [8]. Challenges for checkpointing exhibited by

large leadership machines are completely different and on a

different scale.

In this paper, we study similar checkpointing trends for

applications on the IBM Blue Gene/P system at Argonne Na-

tional Laboratory . Specifically, we present memory trends of

three popular applications: Grid-Based Projector-Augmented

Wave application (GPAW), Carr-Parrinello Molecular Dynam-

ics application (CPMD), and a Nek5000 computational fluid

dynamics application. We also present an analytical model for

efficiently computing the optimum checkpoint frequencies and

intervals, and we determine the limitations of checkpointing

such applications on large systems. Our study and analysis are

based on a “full checkpointing” technique, in which the entire

program state of the processes is stored during the checkpoint

operation. This technique is used by the IBM Checkpointing

library [9] and is the only checkpointing software currently

available for the IBM Blue Gene/P machines.

Our study was conducted on 32,768 cores of the Argonne

BG/P system. In the future, we plan to run the applications

with full checkpointing as well as “incremental checkpointing”

on all 163,840 nodes of the BG/P system.

The rest of the paper is organized as follows. In Section II,

we summarize the related work done on checkpointing in HEC

systems. In Section III, we briefly describe the IBM Blue

Gene system. In Section IV, we discuss the applications being

used in our paper. In Section V, we present the experiments

performed and analyze the results. In Section VI, we present

our conclusions and outline future work.

II. OVERVIEW OF CHECKPOINTING

Checkpointing methods and optimization techniques

have been studied and summarized by several

researchers [10] [11] [12]. In this section, we briefly

discuss some checkpointing concepts and techniques common

to distributed computing environments. In distributed systems,

checkpointing can typically occur at the operating system

level or the application level.

Operating system-level checkpointing: Operating system

(OS)-level checkpointing is a user-transparent way of imple-

menting checkpointing. In this approach, the user typically

needs to specify only the checkpointing interval, with no

additional programming effort; other details such as check-

point contents are handled by the operating system [13].

OS-level checkpointing for an application involves saving the

entire state of the application, inclusive of all processes and

temporary data, at the checkpoint time. Since this type of

checkpointing does not take into account the internal charac-

teristics and semantics of the application, the total size of the

checkpointing data can dramatically increase with system size.

On petascale systems, which are I/O bound, this can cause a

heavy overhead on the runtime of the application.

Application-level checkpointing: Application-level check-

pointing [12], also called user-defined checkpointing, is a

checkpointing method that enables the user to intelligently

decide the placement and contents of the checkpointing. The

primary advantage of this approach is that users can seman-

tically understand the nuances of the applications and place

checkpoints, using libraries and preprocessors, at critical areas,

potentially decreasing the size of the checkpoint contents

and checkpointing time. While this approach requires more

programmer effort, it is more portable, since checkpoints can

be saved in a machine-independent format, and thus offers

better performance and flexibility as compared to the OS-level

approach.

Compiler-level checkpointing [14] also exists. In this case,

the compiler selects optimal checkpointing locations to mini-

mize checkpointing content. Hybrid techniques, such as com-

piler assisted checkpointing coupled with application check-

pointing, also have been studied. These provide a certain

degree of transparency to the user.

Checkpointing in distributed systems requires that global

consistency be maintained across the entire system and the

domino effect be avoided. One way to achieve this consistency

is through coordinated checkpointing [15]. In coordinated

checkpointing, once the decision to checkpoint is made, the

program does not progress unless all the checkpoints of all

the processes are saved. Coordinated checkpointing requires

that system or process components communicate with each

other to establish checkpoint start and end times in single

or multiple phases. Recovery in this technique is achieved

by rolling back all processes to the latest state. Another

method to achieve global consistency is through independent

checkpointing [12], which uses synchronous and asynchronous

logging of interprocess messages along with independent

process checkpointing. In this method, recovery is achieved by

rolling back to the faulty process and replaying the messages

received by the faulty process. Other techniques such as

adaptive independent checkpointing [12] are based on hybrid

coordinated and independent checkpointing techniques.

Checkpointing optimizations have received considerable at-

tention. Two primary techniques that have emerged are full-

memory checkpointing and incremental-memory checkpoint-

ing [16]. In full-memory checkpointing, during each check-

point instance the entire memory context for that process is

saved. In incremental-memory checkpointing, pages that have

been modified since the last checkpoint are marked as dirty

pages and are saved. Incremental-memory checkpointing thus

can reduce the amount of memory context that needs to be

saved, especially for large systems.

III. OVERVIEW OF THE BLUE GENE/P SYSTEM

The Blue Gene/P [7] [17] system at Argonne National

Laboratory, named Intrepid, is IBM’s massively parallel super-

computer consisting of 40 racks of 40,960 quad-core compute

nodes (totaling 163,840 processors), 80 TB of memory and

a system peak performance of 556 TF. Each compute node

consists of four PowerPC 450 processors, operates at 0.85

GHz, and has 2 GB memory. Compute nodes run a lightweight

Compute Node Kernel (CNK), which serves as the base

operating system. In addition to the compute nodes, 640

input/output (I/O) nodes are used to communicate with the

file system. The I/O nodes physically are the same as compute

nodes but differ from them in functional. The Argonne system

is configured to have a 1:64 ratio with a single I/O node

managing 64 compute nodes. In addition to the compute and

I/O nodes, there exist service and login nodes that allow

diagnostics, compilation, scheduling, interactive activities, and

administrative tasks to be carried out. This system architecture

is depicted in Figure 11.

The Intrepid system supports five different networks. A

three-dimensional torus network, based on adaptive cut-

through routing, interconnects the compute nodes and carries

the bulk of the communication while providing low-latency,

high bandwidth point-to-point messaging. A collective net-

work interconnects all the compute nodes and I/O nodes.

This network is used for broadcasting data and forwarding

file-system traffic to I/O nodes. An independent, tree-based,

latency-optimized barrier network also exists for fast barrier

collective operations. In addition, a dedicated Gigabit Ethernet

and JTAG network that connects the I/O nodes and compute

nodes to the service nodes is used for diagnostics, debugging

1This figure was taken from the ‘IBM System Blue Gene/P Solution: Blue
Gene/P Application Development’ redbook [9]

Fig. 1. The ANL BG/P System Architecture

and monitoring. Lastly, a 10-Gigabit Ethernet network, con-

sisting of Myricom switching gear connected in a nonblocking

configuration, provides connectivity between the I/O nodes,

file servers, and several other storage resources.

As seen in Figure 2, the Intrepid back-end file system

architecture includes 16 DataDirect 9900 SAN storage arrays

(each with 480 1 TB disks) offering around 8 petabytes of

raw storage. Each array is directly connected to 8 file servers

through 8 Infiniband DDR ports, each with a theoretical

unidirectional bandwidth of 16 Gbps. The entire Intrepid

system consists of 128 dual-core file servers, each having 8

GB memory each. These file servers, as earlier noted, connect

to the 10-Gigabit Ethernet network through their 10-Gigabit

Ethernet ports. The I/O nodes connect to this 10-Gigabit

Ethernet network as well. We note that the peak unidirectional

bandwidth of each 10-Gigabit Ethernet port of the I/O node is

limited to 6.8 Gb/s by the internal collective network that feeds

it [7]. From a theoretical performance standpoint, however,

the network links connecting the file servers to the 10-Gigabit

Ethernet network will become a bottleneck.

IBM has provided a special user-level checkpoint library [9]

for BG/P applications. This library provides support for user-

initiated checkpointing; a user can insert checkpoint calls

manually at critical areas in the application. These calls are

made available to the user through a checkpointing API

provided by IBM. The IBM checkpointing library supports full

checkpointing, where the int BGCheckpoint() library call can

be used to take a snapshot of the program state at the instant at

which it is called. All processes of the application should make

this call to take a consistent global checkpoint. In addition to

this call, the library provides several other calls to exclude

regions from the program state, to call functions before or

after the checkpoint takes place, and to restart applications

from a certain checkpoint. Currently, the IBM checkpointing

library provides no support for true incremental checkpointing.

IV. OVERVIEW OF THE APPLICATIONS USED

In this section, we describe the three applications from

the fields of molecular dynamics and computational fluid

dynamics, that we run on the IBM BG/P.

Fig. 2. The ANL BG/P File System

A. Molecular Dynamics Simulations

In classical molecular dynamics [18], a single potential

energy surface is represented by the force field. Usually. how-

ever, this level of representation is inefficient. More accurate

representations, involving atomic structure, electron/proton

distribution, chemical reactions, and electronic behavior can

be generated by using quantum mechanical methods such

as density functional theory (DFT). This area of molecular

dynamics is known as ab initio (first principles) molecular

dynamics (AIMD) [19]. GPAW (Grid Projected-Augmented

method) and CPMD (Carr-Parrinello Molecular Dynamics)

are two popular ab initio molecular dynamics codes. AIMD-

based simulations tend to be highly complex, with more strin-

gent requirements for computational and memory resources

than traditional classical molecular dynamics codes have. The

emergence of petascale machines such as the IBM Blue Gene

series has resulted in significant provisions for running AIMD

simulations efficiently and accurately. We thus choose two

applications from this field, as described below, for our study

of checkpointing trends on the IBM Blue Gene supercomputer.

1) Grid-Based Projector-Augmented Wave Application:

The GPAW [20] application is a DFT-based code that is built

on the projector-augmented wave (PAW) method and can use

real-space uniform grids and multigrid methods. In the field of

materials and quantum physics, the Schroedinger equation [21]

is considered important because it describes how the quantum

state of a physical system changes in time. Various electronic

structure methods [22] can be used to solve the Schroedinger

equation for the electrons in a molecule or a solid, to evaluate

the resulting total energies, forces, response functions, atomic

structure, electron distributions, and other attributes of interest.

The PAW method is an electronic structure method for ab

inito molecular dynamics with full-wave functions; and is

often considered superior to other electronic structure methods.

The GPAW application allows users to represent these pseudo

wave functions on uniform real-space orthorhombic grids,

enabling these modeling codes can be run on very large

systems. The results of this can be used to provide a theoretical

framework for interpreting experimental results and even to

accurately predict the material properties before experimental

data becomes available.

2) Carr-Parrinello Molecular Dynamics Application: The

CPMD [23] [24] code is another electronic structure method

and a parallelized plane wave/pseudo-potential implementation

of density functional theory, which targets ab inito quantum

mechanical molecular dynamics plane wave basis sets. The

CPMD code is based on the Kohn-Sham [25] DFT code, and

it provides a rich set of features that have been successfully

applied to calculate static and dynamic properties of many

complex molecular systems such as water, proteins, and DNA

bases, as well as various processes such as photoreactions,

catalysis, and diffusion. Reactions and interactions in such

systems are too complicated to be handled by classic molecular

dynamics; but they can be successfully handled in the Carr-

Parrinello method because they are calculated directly from

the electron structure in every time step. CPMD’s flexibility

and high performance on many computer platforms have made

an optimal tool for the study of liquids, surfaces, crystals, and

biomolecules

CPMD runs on many computer architectures. Its well-

parallelized nature, based on MPI, makes it a popular applica-

tion that can take advantage of petascale systems, motivating

us to choose it for this study.

B. Nek5000

Nek5000 [26] is an open source, spectral element computa-

tional fluid dynamics code developed at the Mathematics and

Computer Science Division of Argonne National Laboratory.

The C and Fortran code, which won a Gordon Bell prize,

focuses on the simulation of unsteady incompressible fluid

flow, convective heat with species transport, and magnetohy-

drodynamics. It can handle general two- and three-dimensional

domains described by isoparametric quad or hex elements.

In addition, it can be used to compute axisymmetric flows.

Nek5000 is a time-stepping-based code and supports steady

Stokes and steady heat conduction. It also features some of

the first practical spectral element multigrid solvers, which

are coupled to a highly scalable, parallel, coarse-grid solver.

The Nek5000 application was chosen for this study because

it is highly scalable and can scale to processor counts of over

100,000, typical of petascale computing platforms. In addition,

the Nek5000 software is used by many research institutions

worldwide with a broad range of applications, including ocean

current modeling, combustion, spatiotemporal chaos, the in-

teraction of particles with wall-bounded turbulence, thermal

hydraulics of reactor cores, and transition in vascular flows.

V. THEORY AND EXPERIMENTS

In this section we describe the experimental methodology

used to conduct this study. We also describe our checkpointing

model and use it in conjunction with the observed application

memory trends to gain insight into optimal checkpointing

parameters.

The scope of our study measures and analyzes the below

trends.

1) How the application memory usage varies over applica-

tion execution time and

Fig. 3. Instrumentation Code

2) How the application memory usage varies with system

size

These memory trends were observed for the GPAW, CPMD

and Nek5000 applications for varying system size upto 32,768

cores. These trends were then analyzed to determine the check-

point frequency and checkpoint duration using the optimum

checkpoint model. In the next few subsections, we discuss the

mechanism used to measure the memory usage and the details

of our checkpointing model.

A. Recording Memory Usage Patterns

In the ‘Full memory checkpointing’ technique, a snapshot

of the entire process memory for every process is taken.

In our experiments, we run the various application codes

and record the data memory, stack memory and process-

related information. Applications running on the IBM BG/P

are statically linked, with the instruction-specific text code

remaining remaining constant. We, thus, disregard the text

sections of the program in our measurements. The data (which

includes the heap memory) and stack memory, manage the

local, global, static and declared variables, as well as memory

requested by various system (new, malloc, calloc) calls - which

constitutes the data that needs to be checkpointed.

In our setup, minimal amount of instrumentation code was

inserted at the startup of each application that could record

the memory usage for a process. An optimal method to

achieve this, transparently to the application, would have been

through constructor methods made available in a statically

linked external library. However, the BG/P compilers, provided

by IBM, do not provide this option. As an alternative, we

invoke this measuring code soon after the entry point of the

application.

From an implementation perspective, the memory-usage

measuring code is based on a timer function that sets up a

timer interrupt for a certain defined interval. As shown in

Figure 3, the interrupt handler method which when invoked,

measures the amount of memory used and records it. The

getrusage() routine, available in the CNK operating system,

is used to track the memory being used.

The getrusage function reports the resource usage statistics

for the calling process or its child processes depending on

Fig. 4. Application Execution with Checkpoint Enabled

the parameters passed to the function. The following is the

signature of the function: int getrusage(int who, struct

rusage *r usage).

The who argument determines whether the values re-

ported pertains the calling process or its child. Legitimate

values for the who argument are RUSAGE SELF which

when used returns resource usage for the calling process and

RUSAGE CHILDREN which returns the waited-for or the

terminated child process.

B. The Optimum Checkpointing Model

Runtime on large systems like Intrepid is a valuable com-

modity, which users wish to use in the most optimal manner.

While checkpointing is a necessary activity, users wish to

devote only a certain percentage of application execution

time to this procedure. Knowledge about checkpoint duration

and frequency, based on such constraints, would help the

user make more informed decisions and tradeoffs between

their resource usage and application resiliency. We attempt

to provide this information through the “optimum checkpoint

model” discussed in this section. Our checkpoint model has

been largely influenced by past research done with other

checkpointing models [27] [28] in this field.

To arrive at the analytical model of the optimum check-

pointing scheme on the Blue Gene/P system, let us consider

an example application as shown in Figure 4. Like a major-

ity of scientific applications, this application has a constant

memory pattern for a majority of its execution period. The

figure is a diagrammatic representation of the application with

checkpointing feature enabled.

Here T is the total execution time, including the time

required to perform all the checkpoints; Ts is the time required

to complete one full checkpoint operation; N is the optimum

number of checkpoints to be performed during the length of

the application execution; and t is the optimum time interval

between two checkpoints when the application resumes exe-

cution.

Let n be the number of cores the application is run on, M be

the mean memory usage per core, and B be the unidirectional

bandwidth from all the compute nodes to storage disks that is

available to the entire application. Based on these parameters,

the time required to save the state of all processes(cores)

during a checkpoint can be given by:

Ts =
M × n

B
. (1)

If TA is the actual length of time the application needs to

complete without checkpointing enabled, the total application

runtime with checkpointing enabled i.e. T is given by

T = TA + (N × Ts), (2)

Given the total application execution time and the check-

point time interval, the total number of optimum checkpoints

can be derived by

N =
TA

t
(3)

Based on equation 2 and equation 3, we can derive the

total application execution time:

T = TA +

(

TA

t

)

Ts

=⇒

T = TA

(

1 +
nM

Bt

)

. (4)

Let us assume that the user makes reservations for duration,

R, close to the approximate total run time of the application,

that is, R ≥ T . If X% is the percentage of reserved time

the user wishes to dedicate to perform checkpointing, then we

have

X =
R − TA

R

TA = (1 − X)R (5)

Substituting from equations 1, 2 and 3 in equation 5 and

assuming R = T , we have

R − N

(

M × n

B

)

= (1 − X)R

Therefore N can be computed as follows:

∴ N =

⌊

XRB

nM

⌋

(6)

We can, thus, derive the number of optimum checkpoints

based on the (a) percentage of reservation time dedicated for

checkpointing, (b) bandwidth from the compute node to file

servers and (c) the total amount of data to be checkpointed.

Having this information provides users the flexibility to choose

areas they wish to checkpoint. In practice, is may be difficult

to predict the accurate value for B since several applications

may use the I/O and network resources at the same time.

However, the user can made educated guesses based on their

system size and file system architecture, as we show in the

next section. In addition, in reality, reservation times (R) are

rarely equal to the application execution time. However, for

long running applications on large systems, end-users tend

to have some information on the total execution times based

on historical data or past runs performed, which can be used

towards determining a more accurate reservation time.

Finally, substituting for TA in equation 3 and solving for

t, we can get the time interval between two checkpoints, as

follows:

t =
M

B

(n

X
− 1

)

(7)

Having checkpoint interval information makes it easier to

develop independent libraries that can be compiled into the

application and can used timer-based methods to checkpoint

periodically.

C. Application Evaluation

In this section, we carry our the evaluation of the GPAW,

CPMD and the Nek5000 application on the Intrepid system.

Applications on the Intrepid system can be run in three

modes: (a) SMP mode: In this mode, only one process, with

a maximum of four threads can be launched on each compute

node with each thread using a core, (b) Dual mode: In this

mode, two processes with a maximum of two threads each

can be launched with each thread using a core. The 2 GB is

equally divided between the two processes; (c) Virtual mode:

In this mode, a single process per core (i.e four processes per

compute node) can be launched. The 2 GB memory is equally

divided among all the four processes.

The GPAW application (version 0.4), being evaluated, con-

sists of 256 water molecules with 2,048 electrons, 1,056

bands and 1123 grid points, with a grid spacing of 0.18. This

application was run on the Intrepid system, with compute node

count varying from 32 cores to 1,024 cores. The application

was run in the smp mode with single thread. Figure 6(a) shows

the memory trends for upto 256 cores and Figure 6 shows it for

512 and 1,024 cores. The x-axis shows the total application ex-

ecution time and the y-axis shows the memory usage per core.

As can be seen from the graphs, the memory requirements for

the GPAW application grows relatively slowly against the total

time execution as the system size increases. We also observe

that the application execution time decreases with increasing

system size. The memory footprint per core decreases with

system size; however, the total application footprint (memory

footprint per core * number of cores) increases with system

size. The memory usage per core remains constant once the

peak is attained, indicating a constant possible checkpointing

time in later stages of the code.

Figure 6(a) shows memory trends for the CPMD appli-

cation. The CPMD application was run in the SMP mode

with four threads on a system size of 8,192 cores. While the

CPMD memory consumption trend is similar to the GPAW

application, we notice that CPMD memory consumption in-

creases a little slowly as system size increases. The important

difference is that the memory consumption for the majority of

the execution time remains the same irrespective of the system

size.

Figure 6(b) shows the memory consumption trend for the

Nek5000. The Nek5000 application was run in virtual mode

on a system size ranging from 8,192 cores to 32,768 cores.

The 3-D graph in Figure 6(b) shows system size on the z-axis

and the application execution time and memory usage (for the

various system size), on the x-axis and y-axis respectively. In

Nek5000, the memory is allocated as soon as the application

starts up and remains the same for the execution lifetime of

the process. Like CPMD, Nek5000 exhibits that the memory

consumption does not vary with a change in system size.

D. Computing Optimum Checkpointing Values

We briefly discussed the I/O and the network infrastructure

of the Intrepid system in Section III. As discussed, the

bandwidth between the 10-Gigabit Ethernet network and the

file servers is theoretically 2 Tbps. When an application uses

the entire BG/P system, all the 640 I/O nodes can theoretically

deliver up to a maximum of 4.25 Tbps. This indicates that

the bandwidth bottleneck for the maximum data throughput

lies more towards the file servers than the I/O nodes when

the system is running full capacity. However since our study

involves only using upto 8 racks (32,768 cores)) out of the 40

racks (163,840 cores) available, we only use a maximum of

128 I/O nodes, thus limiting the I/O node bandwidth to 870

Gbps (i.e. 128 x 6.8Gbps)

Moreover, as we are utilizing only a fraction of the total

system capacity, the available file server I/O bandwidth for

our runs is also limited by the other applications that are

performing I/O bound operations. Each I/O node is equipped

with network interface capable of delivering 6.8 Gb/s. We

based our optimum checkpoint value calculation on two cases.

In the first case(B25), we assume that we are able to makes

use of 25% of the total bandwidth provided by each I/O node

interface. In the second case(B70), we optimistically assume

that we make use of 70% of the total bandwidth provided by

each I/O node interface.

On the Intrepid system, the I/O node to compute node ratio

is 1:64. Each compute node consists of a quad-core processor.

When an application is run in the virtual node mode or SMP

mode with four threads, the 64 compute nodes provide a total

of 256 cores. The Nek5000 was run in virtual node mode and

CPMD application was run in SMP mode with 4 threads.

Assuming, BI/O to be the total bandwidth available per I/O

node and n to be the number of cores the application is running

on , the total bandwidth available to the Nek5000 application

and the CPMD application can be computed by:

B =

(

n

64 × 4

)

× BI/O. (8)

The GPAW application is executed in SMP mode with one

thread, with only core being used on each compute node.

The total bandwidth available to the GPAW application can

be computed by:

Fig. 5. GPAW Memory Consumption (a) Small Systems; (b) Large Systems

Fig. 6. (a) CPMD Memory Consumption (b) Nek5000 Memory Consumption

n M R 25% Bandwidth 70% Bandwidth
BW (B25) N25 t25 B70 N70 t70

8192 10.52 1080 6800 21 50.69 19040 167 6.47
16384 10.52 1050 13600 20 50.69 38080 162 6.47
32768 10.52 1000 27200 19 50.69 76160 154 6.47

TABLE I
COMPUTED VALUES FOR NEK5000

B =
(n

64

)

× BI/O. (9)

For case 1 with 25% of total bandwidth available, we have

BI/O = 0.25×6.8Gb/s = 0.25×6800

8
= 212.5 MB/s. For case

2 with 70% of total bandwidth available, we have BI/O =
0.70 × 6.8Gb/s = 0.70×6800

8
= 595 MB/s.

Based on the the equations from Section V-B and the

observations in Section V-C we can compute the optimum

checkpointing parameter values for each of these applications.

Let us assume that the user is willing to dedicate 5% of the

reservation time for performing checkpoint operations. So we

have X = 0.05.

Based on equations 6, 7, 8 and 9 and the graphs

obtained in the previous section, we compute the optimum

checkpointing parameters for the applications and tabulate

them. In general we consider the reservation time R to

be about 10% greater than the actual application run time

obtained from the graphs.

Table I–III show the calculated checkpointing values for the

three applications; where n is the number of cores, M is the

average memory usage per core, R is the reservation time, B

is the unidirectional bandwidth from all the compute nodes to

storage disks, N is the number of optimal checkpoints, t is the

checkpoint interval.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed checkpointing trends for appli-

cations running on leadership class machines such as the IBM

Blue Gene/P Intrepid system at Argonne National Laboratory.

Ranked #5 on the Top500 November 2008 ranking, the In-

trepid has 163,840 processors and a peak performance of 557

teraflops. We also presented an analytical model for efficiently

computing the optimum checkpoint frequencies and inter-

vals and studied three applications: the Grid-Based Projector-

Augmented Wave application (GPAW), the Carr-Parrinello

Molecular Dynamics application (CPMD), and a Nek5000

computational fluid dynamics application. We also showed

n M R 25% Bandwidth 70% Bandwidth
(B25) N25 t25 B70 N70 t70

32 1500 3168 106.25 1 1792.94 297.5 13 225.45
64 1000 1914 212.5 1 1200 595 12 151.98
128 650 1386 425 1 781.53 1190 13 99.33
256 475 990 850 1 571.68 2380 13 72.79
512 400 858 1700 1 481.65 4760 13 61.38
1024 350 726 3400 1 421.54 9520 13 53.74

TABLE II
COMPUTED VALUES FOR GPAW

n M R 25% Bandwidth 70% Bandwidth
BW (B25) N25 t25 B70 N70 t70

2048 51.82 220 1700 0 249.68 4760 6 31.84
4096 51.85 330 3400 1 249.84 9520 10 31.86
8192 51.87 440 6800 1 249.94 19040 13 31.88

TABLE III
COMPUTED VALUES FOR CPMD

with the help of experimental data and computed values

how application scaling characteristics influence checkpoint-

related decisions. Our current work considered “full check-

pointing”,where the entire program state of the processes

is stored during the checkpoint operation. We chose this

approach because the IBM checkpointing library currently

supports only full checkpointing. We are conducting a similar

study for incremental checkpointing of applications on IBM

BG/P, which will be useful for incremental checkpointing

libraries built in the future for this machine. Our current study

has been conducted on upto 32,768 processes of the Intrepid

system.

REFERENCES

[1] J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 Supercom-
puter Sites, 11th Edition. Technical Report UT-CS-98-391, 1998.
Available at http://citeseer.ist.psu.edu/dongarra94top.html, Also refer
http://www.top500.org/.

[2] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of
inexpensive disks RAID. In ACM SIGMOD International Conference

on Management of Data, 1988.

[3] R. Koo and S. Toueg. Checkpointing and rollback-recovery for dis-
tributed systems. In ACM Fall joint computer conference, 1986.

[4] J. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley. Memory exclusion:
Optimizing the performance of checkpointing systems. In Software:

Practice and Experience, volume 29-2, 1999.

[5] G. Bronevetsky, D. Marques, K. Pingali, and R. Rugina. Compiler-
enhanced incremental checkpointing. In LNCS series: Languages and

Compilers for Parallel Computing, 2008.

[6] S. Garg, Y. Huang, C. Kintala, and K. Trivedi. Minimizing completion
time of a program by checkpointing and rejuvenation. In ACM

SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems, 1996.

[7] IBM Blue Gene Team. Overview of the IBM Blue/Gene Project. 52-1/2,
2008.

[8] J. Sancho, F. Petrini, G. Johnson, and E. Frachtenberg. On the feasibility
of incremental checkpointing for scientific computing. In IPDPS, 2004.

[9] C. Sosa and B. Knudson. IBM System Blue Gene/P Solu-
tion: Blue Gene/P Application Development. 2007. Available at
http://www.redbooks.ibm.com/abstracts/sg247287.html.

[10] J. Plank. An overview of checkpointing in uniprocessor and distributed
systems, focusing on implementation and performance. Technical Report
UT-CS-97-372, University of Tennesse, Knoxville, 1997. Available at
http://www.cs.utk.edu/ plank/plank/papers/CS-97-372.html.

[11] L. Silva and J. Silva. System-level versus user-defined checkpointing.
In SRDS, 1998.

[12] A. Zomaya. Parallel and distributed computing handbook. 1995.
[13] G .Barigazzi and L. Strigini. Application-transparent setting of recovery

points. In FTCS, 1983.
[14] C. Li and W. Fuchs. Catch - compiler assisted techniques for check-

pointing. In FTCS, 1990.
[15] C. Guohong and M. Singhal. On Coordinated Checkpointing in

Distributed systems. In TPDS, volume 9-12, pages 1213–1225, 1998.
[16] J. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent

checkpointing under Unix. In Usenix Winter Technical Conference,
pages 213–223, 1995.

[17] N. Desai, R. Bradshaw, C. Lueninghoener, A. Cherry, S. Coghlan, and
W. Scullin. Petascale system management experiences. In LISA, 2008.

[18] R. Car, M. Parrinello, J. Schmidt, and D. Sebastiai et al. Unified
approach for molecular dynamics and density-functional theory. 1985.

[19] D. Marx and Hutter J. Ab-initio Molecular Dynamics: Theory and
Implementation. NIC series, Volume 3, 2000.

[20] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-space grid
implementation of the projector augmented wave method. Phys. Rev. B,
71(3):035109, Jan 2005.

[21] T. Cazenave. An Introduction to Nonlinear Schrodinger Equations. 1989.
[22] J. Foresman and E. Frisch. Exploring chemistry with electronic methods.

1996.
[23] D. MArx and J. Hutter. Ab-initio molecular dynamics: Theory and im-

plementation. Modern Methods and Algorithms of Quantum Chemistry

Forschungzentrum Juelich, NIC Series, 1, 2000.
[24] Wanda Andreoni and Alessandro Curioni. New advances in chemistry

and materials science with cpmd and parallel computing. Parallel

Comput., 26(7-8):819–842, 2000.
[25] W. Koch and M. Holthausen. A chemist’s guide to density functional

theory. 2001.
[26] James W. Lottes and Paul F. Fischer. Hybrid multigrid/schwarz algo-

rithms for the spectral element method. Journal of Scientific Computing,
pages 45–78, 2004.

[27] John W. Young. A first order approximation to the optimum checkpoint
interval. Commun. ACM, 17(9):530–531, 1974.

[28] J. T. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Gener. Comput. Syst., 22(3):303–312, 2006.

